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We introduce operators of g-fractional integration through inverses of the
Askey—Wilson operator and use them to introduce a g-fractional calculus. We
establish the semigroup property for fractional integrals and fractional derivatives.
We study properties of the kernel of g-fractional integral and show how they give
rise to a g-analogue of Bernoulli polynomials, which are now polynomials of two
variables, x and y. As ¢ — 1 the polynomials become polynomials in x—y, a con-
volution kernel in one variable. We also evaluate explicitly a related kernel of a
right inverse of the Askey-Wilson operator on an L? space weighted by the weight
function of the Askey—Wilson polynomials.  © 2001 Elsevier Science (USA)
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1. INTRODUCTION

Zygmund [26] treats Weyl’s approach to fractional integrals in Sections
XII.8 and XII.9. He defines a fractional integral of order a of a function f
which is integrable and of period 27 to be I, f,
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with i* = /2, He then points out that
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n#0 (in)‘x'

Zygmund [26] uses the notations 7, f and f, interchangeably. He notes
that the semigroup property 1,1, = I, ; follows immediately from (1.1) for
a, f>0. Of course I, coincides with [ f(¢) dt where f~3Y f,e™ with
fo =0. Furthermore if a > n then (d"/dx") I, =I,_,. When m is a positive
integer ¥, (x) is a constant multiple of the Bernoulli polynomial B,,(x).

The purpose of this paper is to define a g-analogue of the fractional
integral operators I,, so that for a =1 it becomes a right inverse of the
Askey-Wilson operator &,. The operator &, will be defined below. Other
one sided inverses on certain L? spaces have been introduced and studied in
[8, 18, 17], and more recently in our work [16]. In order to describe our
results we first remind the reader of the definitions of the Askey—Wilson
operator and g-Fourier series.

Given a function f(x) with x =cos 8, f(x) can be viewed as a function
of e”. Let

f(e?):=f(x), x=cosb. (1.3)
The Askey—Wilson divided difference operator &, [7] is defined by

i‘(ql/2ei9) _f"(q—l/Zeié))

(@qf)(x) = (quf)(x) = é(q1/2ei9)_é(q_1/2ei9) » (14)
where e(x) = x. It follows from (1.4) that
70 112,00\ _ 7, —1/2,i0
(@, )0 =L DT "eT) (1.5)

i(q"*—q %) sin 0

The operator &, was introduced in [7] and is a g-analogue of the differen-
tiation operator. In fact &, maps polynomials to polynomials, since

(X)— 7 q" """, 1 (%), (1.6)

where 7, and U, are the Chebyshev polynomials of the first and second
kinds, respectively. A g-constant is a function annihilated by the Askey—
Wilson operator. A g-polynomial is a function of the form }'}_, a;x’,
where a,, ..., a, are g-constants. These concepts were introduced in [15].
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Note that (1.5) indicates that &, remains invariant if g is replaced by
1/q. In this work we will always assume g e (0, 1) and we shall follow
closely the notation and terminology of basic hypergeometric series as in
the books by Andrews et al. [4] and by Gasper and Rahman [12]. In
particular

n
h(cos 0; ay, ..., a,) =[] (a;e”, a;e™; q)y.
i=1

The concept of a g-Fourier series first originated in a paper by Askey
et al. [6]; see also [20]. But it was introduced in a more formal way by
Bustoz and Suslov in [9]. Later, Suslov [22] introduced a version of
g-Bernoulli polynomials, which will turn out to be different from what comes
naturally from g-Fourier series; see Sections 3 and 4. The g-exponential
function

R (ST - i9+0) ,(1-m)/2 _ ,i(¢—0),(1-m)/2.
éaq(COS 0, (o} ¢, OC) = W z (—e q , —€ q B q)n
s o n=0

(xe™ )" M
(; 9.

X (1.7)

[18] plays a crucial role in g-Fourier series. It is straightforward to see that

20(q1/4
2,6,(cos 0, cos ¢; ) = T—¢ &,(cos 0, cos ¢; o). (1.8)
If we let
&, (x; ) = E,(x, 0; o), (1.9

then &,(0;«) =1, and lim,_,, &,(x; (1 —¢q) «) = exp(2ax). The notation for
&, adopted here is the same as the one proposed by Suslov in [21] and is
different from the original notation in [ 18].

In [18] where Ismail and Zhang introduced the &, function, they also
introduced g-analogues of the sine and cosine functions and used trans-
formation formulas to analytically continue them to entire functions in the
variable «. Bustoz and Suslov [9] identified a special case which leads to a
complete orthogonal system of functions. This opened the door for a
comprehensive study of g-Fourier series, where g-analogues of some results
in classical Fourier series have been proven [9, 22], but many more
questions remain open and deserve further investigation. Ismail [14] gave
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simple proofs of both the orthogonality and completeness of the g-exponen-
tial Fourier system and pointed out that this is just one example of a whole
family of functions defined by series similar to the g-plane wave formula

(1.14) given below.

The continuous g-ultraspherical polynomials play an important role in

the g-Fourier analysis. They are generated by [5]

Co(x; Blg)=1, Ci(x; Blg)=2x(1-p)/(1—q),
2x(1-Bg") C,(x; Ble) =(1—¢"*") C, (x5 B )
+(1=p*q"""C, 1(x;Blq), n>0.

Their orthogonality relation is [5; 12, (7.4.15)]

[ Cutxs Bla) (5 Blay wis B ) dx

_ 2B ap; 9 (1=B)B% )
4. 85 9. A=Ba" g, ™"

where w is a weight function defined by

(€, 7% q),,

_ 4 0<6 )
sin 0(pe™, pe gy, 0"

w(cos 0; Bl q) =

The g-plane wave expansion mentioned earlier is [ 18]

2/0)" (45 9)es i (I—¢""") 1
(—q*/4; 47 (@7 o 2o (1—7q")

xJ2 (5 9) Co(x; 9" | q),

&, (x;i0/2) =

where

(QVHQ q)oo i (_l)n (2{2)v+2n qn(v+n)
v+1.

JP(z;q) =
(q; q)aa n=0 (% q s q)n

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

is one of Jackson’s three ¢-Bessel functions [13]; see also Gasper and
Rahman [12]. Formula (1.14) turned out to be very useful in deriving
many results in this area, including addition theorems for &, evaluation of

integrals, and mathematical physics models [11].
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In Section 2 we give a brief description of the g-Lommel polynomials
{h, ,(x; q)}, [13], which have the orthogonality property

& 14M(v4'1)

X

j2 (q) hn,v+1(1/jv,k(q); q) hm,v+1(1/jv,k(q); q)
k#0 v,k
qvn+n(n+l)/2

l1—¢q ’

n+v+1

where j, , is the kth positive zero of the g-Bessel function J{”(z; ¢) and
A,(v+1) is related to its derivative at those zeros. In Section 3 we first
introduce a formal definition of ¥, (x, y|¢) and use (1.16) to derive the
following convenient expression

%Ta(x, vig)
e 2 4,(3/2)i"* (1=g"H(1=g""*?)
- 4(1 _\/&) W20 2 w3t q(r2+sz+2r+2s)/4
X hy 3,1/ 2w, ); q) by 52(1/ 2w,); )
xCoi1(x: 4% @) Coi (34" 9), (1.17)

see (2.7). We proceed to compute an exact formula for ¥,(x, y|g) in
Section 3. In Section 3 we also show that ¥,(x, y|g) is a g-convolution
kernel where the translation used is the g-translation introduced in [15].
Section 4 is devoted to proving the important formula

@;lxgla(xaqu):Wa+1(xay|q)a (118)

where @;lx is the inverse to the Askey—Wilson operator, defined in (4.4).
The use of formula (1.18) and the expression for ¥,(x, y|q) then allows
us to find the subsequent g-polynomials ¥,(x, y|¢q), ¥;(x,y|q),.... In
Section 5 we introduce our version of the g-Bernoulli polynomials with
particular attention to the odd and even ones and show that they contain
the one variable g-Bernoulli polynomials defined by Suslov [22]. In
Section 6 we derive an expression for the kernel K(x, y; a) of the inverse
Askey—Wilson operator @q‘l containing four parameters a, b, c,d and
show that (4.4) follows from it. In Section 7 we compute 9;1 on some
g-polynomials which are analogues of (x— y)*. This computation is then
used to establish parity properties of the g-Bernoulli polynomials intro-
duced in Section 5. We close the paper with an Appendix where we
evaluate a particular kind of Askey—Wilson type integral and derive a very
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useful theta function identity. The evaluated integral is displayed in
(8.4)—(8.5) while the theta function identity is (8.7).

It must be noted that Al-Salam [1] introduced a different g-fractional
integral operator which corresponds to g-calculus based on the operator D,,

S —flgx )

X—gx

(D) f(x):= x#0, (D) f(0)=/"(0). (1.19)

This line of investigation was continued by Al-Salam and Verma where a
g-Leibniz rule was established in [2]. See also [3].

2. PRELIMINARIES

In [13] Ismail introduced the system of polynomials {4, ,(x; ¢)} by

hoy(x9)=0, ko, (x;9)=1, @.1
2x(1=q"*") by (x5 @) = hyr (5 @)+ 4" h, (x5 ). 22

These are g-analogues of the Lommel polynomials [25]. He also proved
that J®, (z; q) is expressed in terms of J P (z; ¢) and J @, (z; q) as

v+m
— 2 .
qmv+m(m 1)/2J§_2m(z’ q)

=h, (1/z9) IPz ) —hy 1,0 (1 z9) TP (z59), m=1,2,....
2.3)

Moreover he proved that the zeros of z7'J?(z; ¢), which are symmetric
about z=0, are real and simple for v> —1. Denote by {j, (¢)} the
sequence of positive zeros of JP(z; ¢), and let j, _,(g) be —j, ((g), for all
k> 0. Following [13] we define 4,(v+1) via

y J® G @) )
2 500, e N
50V E D0 4,(v+1)
J(z)l(l (9); 9)
_ g D=1Unal9); 4) 24
q A,(v+1) Y

The second equality follows from the three term recurrence relation [13]

JP(z9)— TP (2 9). (2.5)

2(1—¢’
g7 (= q) = 2L Zq)
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With these notations the polynomials {A, ,(x; g)} satisfy the orthogonality
relation (1.16), [13]. Moreover

5o IOz q)

2= (2.6)
L=l TP@e)
Bustoz and Suslov [9] used the notation
Wy = 0’ @, = %jl/Z,n(q)’ n 7é 03 (27)

so that w_, = —w,. Using (1.8) and a very lengthy argument they proved

1 - )
j &,(x;im,,) &,(x; iw,) w(x; "% | q) dx =" 2.8
-1 T,
with
4,(3/2) [ (—q0}; 4% ]2
n= n>0, 2.9
* \[ 87w)|n| J(}%/z(zww; q)

_ 1l 449
2 @ S g,

Ismail [14] gave a simple proof of (2.8)—(2.9) and realized the connection
between the &, orthogonality and the dual orthogonality of the polyno-
mials {4, ,(x; g)}.

Recall that the g-gamma function [4]

~ (@ D
I(@=0-q9)'" (2.10)
(4% Do
satisfies I, (z) — I'(z) when g — 1~. Moreover [13]
j A
fim 22D A o 2.11)
g»1- l—¢q ’ -1~ 1—¢q

Therefore , > 1/4asqg— 1", foralln=0, +1, ....

3. Q-FRACTIONAL INTEGRALS

Let

SO~ Y 8,5 i0,), 3.1)
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In analogy with (1.1) and taking into account (2.8) we define

—9)"
Ia,qf(x)— 2a o Eo (lCO ) &,(x; iw,), a>0. 3.2
The right-hand side of (3.2)isin L*[w(.; ¢'/*| g) ] since (3.1) implies { f, /\/77,,}
e!? and w, - o as n — . The orthogonality relations (2.7)—(2.9) imply

Lof@=m[ P.urlo fO v lod, 63
where
_ (=9 T, —
Y.(xylq= Y Y &,(x;im,) &,(y; iw,), 3.9

0 n#0 (ZCO )ac ?

with 7, and 7z, as in (2.9) and i =e™>2. The reason for introducing the
factor 7, is to be consistent with (1.2).
The semigroup property
L dp g =1,

at B, q>

a>0, f>0. (3.5)

follows from the definition (3.2) when o« > 0 and f > 0. Furthermore (1.8)
and (3.2) give

Doy =114y  0>1, (3.6)
which is equivalent to
Y.yl =¥1(x 1),  a>1, 3.7
Therefore 271, ,=1I,_, ,if a >n.

Suslov [23] proved that

&,(cos 6; a) &,(cos ¢; B)

(BB & q B —
(g% 4. nzo @),

X (_ q(l—n)/Zei(9+¢)a/ﬂ _q(l—n)/Zei(lﬁ—B)a/ﬁ; q)n

g e > (3.8)

y ¢ —n 2/ﬁ2
2\ =gt n)/2,e1(0+¢)a /B, —q =" i 90
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The case « = —f in (3.8) gives

éaq(x; (X) ("@q(y’_d) = gq(x5 =) CX.),

hence (3.4) has the alternate form

(1 _q)“ Z n”)a gq(x’ =) iwn):

Y. (x, =
% 719) 2°%¢""*n, nzo (io,

which exihibits the symmetry of ¥, (x, v | q)

Ta(xa y | q) = T(x(_y’ —X | q)

Furthermore &,(0; «) = 1 and (3.9) imply the symmetry

Y.(y,x|q)=e ™V (x,y]q).

2aqa/4
1 o yIoc(x, y | q)
(1-9)

__a 4,(3/2)/ o
4(1—(\/q)) r7o (i0,)* [T 2 2w,; 9)1*

cr—5 r2 sz 4 r : —q°
l q( +s7)/ (1 q Y )(1 q 1/2) J £+)1/2( Dn q)
0

X

r,

xJ 2\ (2w, q) C,(x; ' q) C,(; | q)

_ M e Alnl(3/2) i (1 _qr+1/2)(1 _qs+1/2)
4(1 —\/(;) rs=1 n#0 wﬁ*’“ q(r2+s2)/4

X hr—1,3/2(1/(2wn); q) hs—1,3/2(1/(2wn); q)

xC,(x;4'"*| q) C,(y; 9'*| q).

b8

This proves (1.17).

277

(3.9)

(3.10)

(3.11)

It must be emphasized that the series (1.7) defining &,(x, y; @) converges
for x, ye[—1,1] and |«| < 1. The &, in (3.10) is the analytic continuation
in ot of (1.7) discussed in [18].

We now establish the alternate representation of ¥, (x, y|gq) given in
(1.17). Using (1.14) we find
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We now study the kernel ¥, (x, y|¢g) when a =1, 2, .... Clearly for « =1
we can use the relationships (2.1)—(2.2) and the orthogonality relation (2.6)
to justify

2q1/4
m%(x,qu)

(1—
i s(l_ s+3/2) Z Alnl(3/2)
q(r2+s2+2r+2s)/4 0 (260”)2

X [hr+1,3/2(1/(2wn); q)+qr+l/zhr—1,3/2(1/(2wn); ]

f) Z Cr+l(x q/zlq)cs+l(y7 1/2|q)

h(1/2w,); )

This and the orthogonality relation (2.6) lead to the representation

Y(xyle)=Y, ¢”C1(x9"*q) C(y;9"*| @)

2
(l+\/§) ’ r=1

—Co1 (19" 9) C, (x5 4" )] (3.12)

We now simplify (3.12). Let

G(x,y):= Z q"C (x4 @) C(y; 4" | 9)

r=

—C, (3971 9) Ci(x; 4" 9)].

The orthogonality relation (1.12), the Christoffel-Darboux formula [24]
and the observation that the coefficient of x" in C,(x; 8|q) is 2"(f; )./

(¢; ), implies

G(cos 6, cos ¢)
2(x—y)
/ k+1/2
Z q"? Z T Ci(cos 8; ¢'*| q) Ci(cos 6; ¢'*| q)
2] 1_
=j§0 W ¢
© 1 _qk+1/2

XY T gt Ci(cos 0; 47| q) Ci(cos 65 ¢'* | g).
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Exercise 7.33(ii) in [12] evaluates the k-sum above as
(q%’ q2j+1; q)oo (qj+lei(9+¢)’ qj+le—i(9+¢)’ qj+zei(0—¢)’ qj+28i(¢—:9); q)oa
(2. 47735 @)y, (q7*260%9, qI*3e 704D, 26100, git3e10=0); )
X Wy (q¥*3; g3, g/t 3e" 09, qitie IO, g tigl0=h) qitiei=0 | g g1

Therefore we find

G(cos 6, cos ¢)

2(x—y)

1
_ (82, 4% Qs (ge"""?, qe P, g%"70, g% g,
(4, 4% @)y (q7€"*D, g2+, q310—9) giel=0); g
(1 _q%ei(9+¢))(1 _q%e—i(0+¢))

¢! _qj+%ei(9+¢))(1 _qj+%e—i(0+¢))
g (@ Daer (@' D

1—g*? (4% Dojri (@ @)

s j+k [} k

(q3/2ei(9+¢), q3/23_i(3+¢), ql/Zei(9—¢), ql/Zei(¢—€); q)j+k

(qe'®*?, ge™ 9, g%'7P, g% q), 4

(qei(9+¢)’ qe—i(9+¢), qui(€—¢), qui(¢—0); q)oo

(209, gie O+, g1e' @~ g1e'4-0); q)

© 1_q2n+3/2 (qa/z q1/2. 9

’ b n

8 Zo 1-¢°% (4,959
n= > ) n
(q3/2ei(9+¢)’ q3/2e—i(9+¢)’ ql/Zei(B—qS)’ ql/Zei(¢—9); q)”

(qei(6+¢)’ qefi(0+¢), q2ei(07¢)’ qui(¢79); q)n

i(0+¢) —i(0+¢) i(0—¢) i(¢—9);

©  © |_g )
xY Y L g(1-g7*h

j=0 k=0 l—g’*2

1 _q2j+2k+3/2

X

X

1/2.

=(q"% 9

n/2

o)

The ¢¢, series is summable by Jackson’s formula [12, (I.22)] and its sum
is given by

X q

3 3011 1 _ie 3
% ¢ q,9% —42, 42, qul( +¢)’ qze i€ +¢)9 qn+29 q "
TN G —q2, @3, qre O, g O, g, gt

(qz qei(8+¢) qe—i(€+¢) q; q)
b b b 2 n
3/2 3/2,i(6+9)

3/2 —i(6 1/2. :
L q*Pe" 0D gm0 gl2 g,

(q

Hence the n-sum is

3/2 . 7/4 7/4 1/2,i(¢—0) ,1/2 i(0—
¢<q/,q/,—q/,q,q/e’<¢ )q/et( 9)
69s

q3/4’ _q3/4, q3/2, qui(9—¢), qui(¢—6)

0 q1/2>, (3.13)
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whose sum is

3/2 _1/2 2 i(6— 2 _i$—0). 5
(¢°7 4", %" P, g% =; q),

by [12, (IL.20)]. This establishes the explicit form

Y(x, y1q) =5 (y—x)—A4,(e”, e?), (3.14)
where
Al(eias ei¢)
_(1+4"?)(cos f—cos §)(ge'**?, e+, ge'*9, ge'¢ = g),,
4(q1/26i(0+¢), q1/2e—i(9+¢)’ q1/2ei(€—¢)’ ql/Zei(d)—G); q)oa >
(3.15)

and x=cosf, y=cos¢. It is easy to see that 4, is annihilated by the
Askey-Wilson operator &,. Thus ¥, is a g-polynomial in x—y of degree
one. In the next section we study ¥,,(x, y|g) form=2,3, ....

The limit as ¢ > 1~ of A4, can be found from the g-binomial theorem,
since

i(£0+4).
lim (ge 5 Doo

et = lim do(q"5— ¢ 00
g—1" (ql/ze'(ieﬂ); Do a-1"

=[1—¢/*02N]~1/2, (3.16)
Therefore

—2(cos 8 —cos ¢)
A[{1—2xe" +e*}{1—2xe " +e 29} ]/

lim A,(e”, e") =
g1

_ cos¢p—cos b
" 4cos —cos ¢’

that is,

lim 4,(e”, e) =1 sgn(y—x). (3.17)
g1
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Suslov’s results in [22] correspond to the special case y=y,, with
yo:=1(q""+q7"* /2. To see this consider &,(y,;iw,), for m#0. The
relationships (1.7) and (1.9) give

2
. (—05:9) &, . . | g’
&(yo3 i0,,) = ———5——5= Y (—ig I, gD gy —E
e (—q @3 ¢°)., ,,go (% D»
2
(_wrzm qz)oo i . (=n+1/2)/2. 1/2 w:lnqn /4
=T § (—ig O gy, 2
(_q C()fn; qz)oo nZ::0 : (q; q)n
(_wfnaq2)oo d . 1/4 : 1/4 1/2 w,rtnln
= (—iq"*, ig"* q'?), ——
(—q ;4. ngo (4 9)»
(004 & (=45, .,
T (— 2. 2 Z . L@,
( qwmaq )oo n=0 (Q7 q)n
_ (_wr2n9 qz)oo (_lwmql/zs q)oo
(—q0r: 3D (0, @)y
Therefore &,(y,; iw,,) is given by
& (yy; i0,) =—F—. 3.18
W00 ) = e T, ) G18)

Finally J{),(2w,,; ¢) = 0 implies (iw,,; \/;)OO =(—iw,; \/;)OO, hence

. (_a)fna 2)00
&,(yos iw,) = /—(_qwz_qqz) , (3.19)

and ¥ (x, y, | ¢) becomes

20(1—9)* (4, /@ @)

2°9""(q, 4; @)
T

n (_w12n9 qz)oo .
X — / E(x;im,).
n#0 (lwn) (_qwfns qz)oo !

Y. (x, ¥ q) =
(3.20)

)

Suslov [22, Sect. 7] used (3.20) to define g-Bernoulli polynomials; see
Section 5.

In [15], Ismail introduced a generalized translation operator (g-transla-
tion) by defining it first on the continuous g-Hermite polynomials then
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extending it by linearity to all polynomials. The action of the g-translation
by y, E;, on H,(x|gq) is defined by

“ n 22
EEG0=3 | 1| BEl0g .0 e
m=0 q

where the polynomials {g,(x)} are

g.(x) _["/2] ¢ H,_x(x|9) (n—2k)*/4

(@D o @50 (& Do G2
It was shown that £ commutes with &,, and E satisfies
E}&,(x; 0) = &(x; a) E,(y; ) = E,(x, y; ). (3.23)
Thus
Y.(x,y|l9)=E;]¥.(x,0]q) = EJ¥(0, y[q). (3.24)

This means that ¥ (x, y|q) is a g-analogue of the convolution kernel
Y. (x—y)of (1.2).

Observe that (3.23) implies lim,_,; g,(x) = (2x)", since lim,_,, H,(x|q)
= (2x)". Also note that E7 has the operational representation

Ey=6,(y;(1-q) ¢7*/2) 2,). (3.25)

In particular the g-constants are invariant under g-translations.

4. Q-INVERSE OPERATORS

The main result of this section is
g(;lwa(xaqu)=Ta+l(xay|q)a (X>0, (41)

where 9 ;1 is the integral operator defined below in (4.4).
Applying (2.1) and (2.2) we see that
1— qr+ 3/2

n

hr,3/2(1/(2wn); q)= hr+1,3/2(1/(2wn)§ q)

+qr+1/2hr—1, 3/2(1/(2wn)§ 9,
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which we substitute in (3.12), then replace r in the r sum that contains

h,_y 3, by r+1. After combining the two r sums we get to the equivalent
representation

yjoc+1(x’ y | q)

= me—imﬂ i z A|n|(3/2) l‘—S(l s+3/2)
(1 _\/&) qa/4 s=0 n#£0 wa+2qs(_y+2)/4

X hy 3(1/ (2,); 4) Cos1 (93 4" 9)

+2—a_3(1 q)“+1 —zmx/2 i Z A|n|(3/2) ir—s(l_ss+3/2)
(l_f)q r,s=0 n£0 w;‘+2q('2+s(s+2»/4

Xh, 35 (1/Q2w,); q) hy 51/ Rw,); @)

X[/ Crar(x: 41 9) = Co(x: 4" | )], 4.2)
THEOREM 4.1. The right inverse to the Askey—Wilson operator satisfies

g;lxwa(xa y I q) = Toc+1(x5 y | Q), (43)

where

2
(2, )(cos 0) = % h(cos 0:— g, —g*%)
< [ (e, e7; q),, f(cosy) dy
o h(cos y;— g, —g*7*, q' e q'/e~)
_ (4 9)%
47tq1/4(q1/2, q3/2; 2
V (€2, e72; q).. [1—2¢"* cos Y +¢"/*] Heos iy
h(cos W; —q'/4, —g®4, g'/4, g% .
eomtia T 4.4

The origin of this particular parameter free form of the kernel for @q‘l
will be made clear in Section 6. Furthermore the second term on the right-

hand side is a constant and corresponds to specifying the lower limit of
integration in a definite integral.
We next prove Theorem 4.1.
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Proof. We first evaluate 2, C,(x; ¢'/*| q). We have

T (621‘1[1’ e72i|ﬁ; q)oo Cr+1(COS lp, q1/2 | q) dl,b

o h(cosy;—q'*, —g**, g%, q'%e )
,(r+1)/4(ezn/, e 2 D

_-[ h(cos yr; — 3/4’ ql/z i ql/ze_ig)

—r— 1/4 iy 1/4_—iy
q b q b q e b q e
X 405 < (1> ay
(_1)r+1 q—(r+1)/4(e2iu//’ e—Zin[/; q)w

_q1/29 q, —q
= fo h(cos w;_q1/4, _q3/4 ql/zeie ql/Ze—iH)

—r—1 r+ 1/4 n// 1/4_ —iy
g7 g2, —q e, —q'e
4¢3< q)dw
_q s q,
I R AT )Y 4 21(q"*%; q)y, (—1)H gD

1/2 k+1

o (9.9, —q9,—q"% 9 (4.9,9
27[(—1)r+1 q—(r+1)/4
~ (1—-9)(q, 4; )., h(cos 6;— g™, —q**)

3/4 19 3/4 ,—if

Ny <q"‘1,q’ —q*%”, —q’e
4
’ _ql/2’ qa —q

k+ 3/4, _q5/4)

5 @)o h(cos 0;—q

o).

where the Sears transformation [12, (III.15)] was used in going from the
second line to the third step. Furthermore the Askey—Wilson integral
evaluation was used to go from the integral involving a ,¢, to the k sum. So
the first term on the right-hand side of (4.4) with f(x) =C,,,(x; ¢'/*| q) is

1+2xq1/4+q1/2 q—r—l qr+2 _q3/4eia _q3/4e—i6
k . ¢ < b b b
2(—1)THT gUFIE 4T —q¢'% ¢ —q

q, q>. 4.5)

To the ,¢, in (4.5) we apply the Sears transformation [12, (III.15)] with
n=r+1, a=—q** " d=q?% then transform the answer again by the
same transformation with n=r, a=—g% ™ d=gq* Finally apply

another Sears transformation with n=r, a = ¢’*3, d = —g*/%. This identifies
the 4¢, in (4.5) as

(c1y qual2eostaPea R <q e Q>

(I+9)(1+4¢'?) ¢ -4 —q7

3/4e—i6’
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which is

,1—-2¢4"*cos 0+q'" (g; 9),
A+ +4"%) (4% ),

(-1) g C (cos 0; 47| q).  (4.6)

Hence the first term on the right-hand side of (4.4) with f =C, ., is

q"(q; q), (1—2g"*cos 0+ q'/*)(142¢"* cos +g''?)
2(¢% q), (+g9)(1+4")
x C,(cos 0; ¢**| q)

which reduces to

(1—q)q"?

A—g ) [4'/%C,,2(cos 05 ¢'*| g)—C,(cos 0; ¢ | )], (4.7)

where we used (3.8) of [18] in the last step. Therefore the contribution to
2,'¥,(cos 0, y| ) from the first term in (4.3) is

(1—61)““q7°‘/4e_,-m,2 i 4,(3/2)(A—g"**7) i
2°+3(1—¢4'7?) 5o wﬁ+2q(r2+s(s+2))/4

Xy, 32(1/(29,); 9) Ci1 (739" 9)
X [¢'C, ,1(cos 8; ¢'* | ¢)—C,(cos 6; ¢'*| 9)],

hy52(1/20,); 9)

which is precisely the second term on the right-hand side of (4.2). Since
C,(x; ¢"*| q) = 2x/ (1 +q'/?), we find that the second term in (4.4) is

(1-9)q, ¢ 9o
1/2.

4n(q'"”, 4'% )

= (e, e7; q),, Ci(cos Y; 4% | q) C,, (cos y; ¢'/* | q) dys
X JL) h(COS l//’ q1/4’ q3/4’ _q1/45 _q3/4)

__ (-9
A= o



286 ISMAIL AND RAHMAN

by the orthogonality relation (1.12). So, from (4.3) and (4.8) it follows that
the contribution of the second term on the right-hand side of (4.4) (with

f=Ci(x 4" q) to 2, W, (x,y|q)is

g "*(1-q)*"! sy 4,(3/2) i (1—g*+"?)
2a+3(1_q1/2) = = wz+2qs(s+2)/4

X Cy1(1:9"71q) by 5,(1/2w,); q),

which is of course the first term, on the right-hand side of (4.2). This
completes the proof of Theorem 4.1. |

We now demonstrate the usefulness of Theorem 4.1 by computing the
kernels ¥, (x, y | ¢q) and ¥,(x, y | q).
Since

e®h(cos 0; e, ge™)
—x= S
2h(cos 0; ge ™, ge'?)

we find that the first term of the right-hand side of

D P1(x,y19)

(1-9)(4, ¢; 9)w
= 47Zq 1/4 h(x, - q1/4a _q3/4)

= (e, e7; q),, Wi(cos Y, cos ¢ | q) Ay
o h(cos y;— g%, —q° T, g%, g1 7%

/g [ (e, e7; q),, ¥1(cos i, cos ¢ | g) dyf
4n(1+4'"2) Jo  h(cosy;—g'%, -, ¢, ¢

4.9)

can be written as

1-9)(, ¢ 9 i
327rq1/4 (x;_q1/4, _q3/4) e ¢

" (e, €75 q),, h(cos Y; ™, ge™) dyf
0 h(COS l#, qei¢’ qe_i¢9 _q1/49 _q3/4a q1/2ei9, ql/Ze—ie)

J = (144" (™, e q),, h(cos y; e, ge™) dyy
o h(cos yr; g%, q'%e™, q'%e™, q'2e™, —q'/* —q*/%)

]. (4.10)
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By (8.5) the first integral in (4.10) is

2ngq e [(1 +2¢'y+4"HD (1 +2¢°y +¢7)
(1-4°)(4: 4 D)oo h(x;—q'*, —g*"*)

_(1=2¢'cos(8+¢) +q)(1—2¢" cos(6 — ) +¢) ]
h(x;—q'*, —¢*")

while the second term is

2nq Ve (14 q'?)
1-94. ¢ 9w

14+2¢"x+4'" (4" @) k(1 4", ¢
X — - - .
h(x;—q", —¢*") h(x; ge”, ge™)

Thus the first term on the right-hand side of (4.9) is

14+q7'2 [ h(x;—q""%, —q¢**) h(y; ¢'*, ¢*'*)
[ A N W —(142¢"*x+4'?)
16 h(-x, ge’, ge )(q aq)oo
(1_+_2q1/4y_+_q1/2)(1_+_2q3/4y_+_q3/2)
(1+4¢"*)(1+9)
_(1—zq“zcos(e+¢)+q><1—2q“2°°s("‘¢)+@] @i
(1+4"(1+¢q) ' '

On the other hand the second term on the right-hand side of (4.9) is

ri(1/2)q™"? = (e, e q),,
327[(1 +q1/2) 0 h(COS ‘Pa q3/49 q5/49 _q1/4a _q3/4)
x {(1+2q"* cos y+q'*)—(1+2¢"* cos p+q'/*)} dys
Ii(1/2) g™ = (e, eV q),, h(cos y; e, ge') dys
32ne_i¢ 0 h(COS lp; q3/45 45/4, _q1/4’ _q3/45 ql/Zeidz, ql/ze_i¢)

(1+q1/2)(1_q2) (1+q_1/2) 1/4 1/2 (1+q1/2)2
= TegP—g7 16 (M TyHaD e m
q—1/2
(1=2¢"*y+4")(1-2¢""y +¢*"). (4.12)

T 16(1+9)
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We now use the identity (8.7) on the first term in (4.11), then combine
(4.11) and (4.12), simplify, and use Theorem 4.1 to obtain

¥,(cos B, cos ¢|q)
=(1+q‘”2){h(x;q”ze""‘,q‘“e""”)_(l—q)q”2

16 h(x; qe“”, qe—i¢) 1_q3/2
_(1—2q1/2cos(e+¢)+q)<1—2q”2cos(9—¢)+q)} @13)
(1+g)(1+¢"7) o

To bring the relationship between ¥,(x, y|¢q) and ¥,(x, y|¢) in a sharper
focus we may rewrite them in the form

Y(x,y1q) =—4,(e”, e?)—4y(x—y), (4.14)
Y12()('.9 y | q) = _AZuO(xa y)_Al(ql/zei09 ei¢) Uy (X, y)
—% Aptir(x, ), @.15)
where
AO = 1/4’
] ) 1 1/2 h . ,—i0 i6
Al(ezﬁ, el¢) — ( +?e ) (COS (ﬁla/f . s qle/z )_.6 ,
8e™  h(cos ¢; q'%e”, q'Pe™) (4.16)
L _(+g(—g)
, =

16(1—¢"%) ~

and the u-functions are defined in (5.4)—(5.8). In a fairly analogous manner
we may now compute ¥;(x, y| ¢g) by applying 92;1 on (4.15). Thus we get

q i0 i
V(5. v 1) = — Ao x, y)——l{ A(e", ) i(x, )
q

_ qs/on
(1+g9)(1+g+4°)

us(x, ). 4.17)

Note that A4,(e”, e™) is invariant under e” — ge®, hence A,(q*e”, e™) =

A (e? e?), k= +1, +2,.... Thus 4,(e”, e*) appears in ¥,(cos 8, cos ¢ | q),
¥.(cosf,cos¢|g),.... On the other hand A,(q"%",e) appears in
¥,(cosB,cos ¢|q),P,(cosb,cosd|q),.... The details will be given in
Section 7.
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5. A O-ANALOGUE OF BERNOULLI POLYNOMIALS

Ismail and Zhang [ 18] characterized the eigenvalues and eigenfunctions
of D', on L[(1—x%"""2,—1,1], where D=2, and v>0. In other
words they solved the equation D' f = Af for

feLl [(1=xY)""1Y2 1,11 n LY[(1=x?)"+Y% —1,1], v>0.

The operator D' was defined as an integral operator whose kernel was
given as a series in ultraspherical polynomials. This is essentially the same
as defining D! through its action on the ultraspherical polynomials via

1
DCI () =5 Ch (). 5.1)

In [18] it was shown that the eigenvalues are +i/j,,, k=1,2,..., where
{j,.x} are the positive zeros of the Bessel function of the first kind, J,(z),
arranged so that j, ;. , > j, ;, for all k. The eigenfunctions corresponding to
+i/j,  are constant multiples of exp (£ ij, , x).

Let 4, be real for all n, =0, +1, .... According to Levin [19, Section
3.3] the system {e”*} is complete in C[ —mx, n] if there is § such that
Ay=n—90,, A_,=—n+6,, with [n|>06,>0>0, n=+1, +2,.... There is
no restriction on A, other than being real. The sequence 4, =0, 1., =
Jjv, +n/m satisfies all the above assumptions [25], hence {exp(zxij,, x):
n=0, +1,...}, with j, , :=0 is complete in C[ —1, 1]. The case v=1/2 is
interesting because j,;,,=nn and the system {e”™} is now also an
orthogonal system. If D= then its resolvent, namely (1—D)7', is
—I,(1=AI)7", which is —Y°_, A"I’}*". Using (1.1) with n replaced by nx,
and the fact (;)™ = I,, we see that the resolvent of D is an operator whose
kernel is

[ee] o0 /’Lm

)" exp(inn(x—y)). 5.2)
m=1 n#0

The n-sum is —2”B,((x—y)/2)/m! [10] and the above sum becomes a
generating function for Bernoulli polynomials [ 10]. Therefore the Green’s
function of D (the kernel of the resolvent operator) is

24
G(x,y; A)=—1 +e“——1 exp(A(x—y)). (5.3)
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Using an analysis similar to that in [ 18] we see that the eigenvalues of D
are inw, with n=0, +1, .... Clearly the A-singularities of G(x, y; A) are at
A=inm,n=0, +1, ... and the residue at A = inn is e™ ™™ as expected.

We now come to g-Bernoulli polynomials. Define polynomials {«,(x, )} by

un(COS 0’ cos ¢) ‘= 27nefim9(q(17n)/28i(6+¢)’ q(lfn)/Zei(07¢); q)n' (54)

It is easy to see that u,(x, y) is a polynomial in x and in y of degree n, for
all n > 0. The first few u,’s are

uO(xsy)=1a ul(xay)=x_ya

uy(x, y) = x>+ y*—xy(q"*+ 47 +5 (¢"*— g7 (5.5
Furthermore
1-4" o e
9‘Iun('xa J’)=1Tq " un—l(xa y) (56)
Observe that

n—1

(%, y) =[] [¥*+ 3> =xp(g 72+ ) +5 (77> =g »)?], (5.7)

j=0

tipr (¥, 7) = (¥ =) [] [¥*+5" =3y +4)+3 (47~ ¢)’]. (5.8)

j=

Clearly u,(x, y) > (x—y)" as ¢ — 1. Furthermore u, has the symmetries

un(_y9 _x)=un(xa y): un(ys x)=(_1)n un(x9 y)

Since 2,¥,(x,y|q9) =¥, 1(x,y|q) and ¥,(x, y|q) is given by (3.15),
x=cosf, y=cos ¢, it then follows by induction that there exist func-
tions A,(e”, "), ..., 4,(e”, e*) such that 9, 4,(e”, e?)=0, j=1,..,n
(g-constants) and

¥, (cos B, cos¢|q)

i i (1 _q)k _
A,,,k(qk/ze 0 e ¢) k(k—1)/4

u,(cos 0, cos ¢), (5.9)
0 (75 D«

k

where 4,(e”, e) = 1/4, and 4,(e”, ") is as in (3.15) and (4.16). In view of
the discussion at the end of Sections 4 and 9 it can also be proved induc-
tively that all but one of the 4,’s, namely A4, are in fact absolute constants
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with A, = A, = --- = 0. These facts will be established in Section 7. When n
is an even positive integer the coefficient of u,_,(x, y) is

(1—g)"!

- q(n—l)(n—Z)/4Al (ql/ZeiG, ei¢),
(qn q)n—l

and, if » is odd the coefficient is

(1 _q)”—l n—1)(n— i i
G g4, (e, ),
] n—1

2

as observed before. The reason for the presence of ¢'/? in some of the

subsequent A’s is the fact that

(2, f)(x) = f(¢"%")2,)(x), if 2,f=0. (5.10)
It is clear then that (5.9) can be written in the form
—Y¥, (cosb,cosd|q)
n . . 1— k
=¥ Ao ety S0 ity (cos 9, cos )
k=0 (45 D«
+ [Al (q(n—l)/ZeiB’ ew) _Al (eiﬂ’ ei¢)]

1— n—1
x —((q' qq)) g De=D/4y,  (cos 6, cos @).
’ n—1

Thus the second term on the right-hand side in the above equation is not
zero only if n is even. This and the above considerations establish the
generating function

=Y ¥.(xylpQn)”

n=0

("1 -9)% D)y & B iy
= (¢ (1 —9)% ¢ Z—lo A,(e”, e?)(21)

X &,(x, —y; (1—q) tg7"/*)

(q"’r*(1—q)% 4°).,
(g7 (1 =9)% %)
X[8,(x,—y; 1—q) g7/ = E(x, —y;—(1—q) tg™""].  (5.11)

+1[4,(q"%”, ) — 4, (e”, e)]



292 ISMAIL AND RAHMAN

In view of [ 10, p. 37],

i—I;Bk(x/Z) __y exp(innx)

n#0 (inﬂ)k ’

(5.12)

we may define the g-Bernoulli polynomials {B,(x, y|¢)} as constant mul-
tiples of the polynomials ¥,(2x, 2y | ¢). This definition is not suitable if we
require %,B,(x, y) to be a constant multiple of B,_;(x, y). The reason is
that &, and the change of variable x — 2x do not have a simple commuting
relation as in the case of the differentiation operator. This makes us settle
for the following definition

B,(x,y|q9) =—(q;9), 2"V,.(x, ¥ | 9). (5.13)

Therefore

B(x,ylq) x—y

g~ 3 +24,(e%, %), (5.14)

By(x,y|q)=1,

and we have the generating function

00 tnqn/4
- Bn(x’ y | q)
nZ::O (qs q)n
(a°(1=9)% q°) & 0 i
= 4,(e”, e”) g"*(2t)"
(tz(]' _q)Z’ q2)oo nZ::0

x&,(x,—y;(1—q) 1)

@’ -9 q%)s
(1 -9)% 4.,
x[&,(x, —y; (1—q) 1)=&, (x, —y;—(1—¢q) 1)] (5.15)

+1[A,(q'%", ) — 4, (e”, e")]

Comparing the generating function (5.11) with the generating function

* B,(x) o te™
n! e'—1

(5.16)

n=0

[10], we see that the sequence A4,, 4,(e”, e), ... plays the role of Bernoulli
numbers.

Let y, = [g'*4+4¢7'/#]1/2. Observe that in view of (3.21) and (3.22) it
follows that B,(x, y,) are essentially the Bernoulli polynomials introduced
by Suslov in [22]. This can be seen from the material at the end of
Section 3.
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g-analogues of some of the properties of Bernoulli polynomials and
numbers can be derived from the results in this section. The first example is
the analogue of

B(x+z2)=Y <”>B,,k(x) z*, (5.17)
k=0 k

The notation f(x+ y) was used in [15] to denote E}f(x) (=E;f(y)).

Now (3.24), (5.15) and the fact that g-constants are invariant under

g-translations imply

. " (Z 1—
Bn(x+z,y|q)=kgo[2] B, (x,y]q) 22 ( a

(% D W) 19

where we used

fsa) =3 e

(5.19)

Connections with a g-analogue of the zeta function are under investigation.

An attractive approach would be to use the extra degree of freedom in
¥ (x, y|q) by simply taking y = —y,, y, being (¢"/*+¢/*)/2. This will
give a g-analogue of the identity

B,(x+1)—B,(x) =nx""".

6. A KERNEL FOR 2,

Let {p,(x;a)} be a multiparameter family of polynomials satisfying the
orthogonality relation

|| pulx ) a3 2) wxs 2) dx =y (2) 6., (6.1)

where a stands for the multiparameter vector (ay, ..., a,). Assume further
that we have a lowering operator 7 so that

Tp,(x;a)=u,(a) p,_;(x;a+1), (6.2)

where a+1=(1+ay,...,14+a,). When T is &, then the continuous
g-ultraspherical polynomials and the Askey—Wilson polynomials are
examples of this set up. The Poisson kernel of {p,(x; a)} is

B(xyiw=% ’%z". 6.3)
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Since one would expect

lim [ P(x.y:2) f(5) w(yia)dy=f(x), (6:4)

to hold, we defined [16] a formal right inverse to T to be T, where

(T f)(x) = fE K'(x, y;a) w(y;a+1) f(y) dy, (6.5)

and the kernel K'(x, y; a) is given by

0

Dopi1(x;2) p(y;a+1)
K'(x, y;2) = "
CCrw=2 GGt wa@

(6.6)

In this section we find explicitly a kernel K which corresponds to K’ with
t =1, the polynomials are the Askey—Wilson polynomials. This provides a
representation of a right inverse to &,. A crucial step in the proof uses the
concept of a g-integral, [4, 12].

The Askey—Wilson polynomials correspond to a = (a, b, ¢, d) and

P,(cos 0;a)=P,(cosb;a,b,c,d|q)
iy g™, abcdq"', ae® ae™"
T\ ab ac, ad

q, q>. 6.7

The kernel K(x, y); a) is split as K,(x, y; a)—K,(x, y; a) as in the last
equality in (6.17). The kernel K, is given by (6.19) while K, is given by
(6.22).

In the Askey—Wilson case the u, and /4, are defined through

2aq7" (1 —g"*")(1 —abcdgq™)

1) = T S A —aby(1 —ac) (1 —ad)’ ©8
and
1 _ (g, abq, acq, adq, beq, bdq, cdq; q).,
h(a+1) 2n(abcdg?; ).,
(1—abcdg™*") (abcdq, abq, acq, adq; q), 69)

(1 _adeq) (q9 qu5 bdq’ bcq; q)n aann’
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respectively. Substitute for u, and A, from (6.8) and (6.9) in (6.6) to find
that the kernel K’ when ¢ = 1 becomes

(1—¢g)(1—ab)(1—ac)(l—ad) q
2ahy(a)

K(cos 0, cos ¢;a) =

[ce]

XY

n=0 1 _adeq a2n (% qu’ bdqa qu; q)n

1 —abcdq®™ ' (abedq, abq, acq, adg; q),

P, ,(cosB;a) P,(cos p;a+1)
(1—g"*")(1—abcdq™)

(6.10)

However, Exercise 7.34 in [12] provides a g-integral representation for the
Askey—Wilson polynomials as moments of a discrete measure which takes
the form

1 (ed; @)ns
A(0) (ab; @),

y jqe""’/b (bue™, bue ™, abcdu/q; q).,
qew/b (ba“/% bc”/‘]a bdu/q’ q)oo

P, 1(cos 6; a) =

(q/1; @)1 <abu>”“
AT Dy (RN g, (6.11)
(abedu/ q; @)ni !
and
P,(cosg;a+1)
1 (bdq, q), 4% e (cvg'?e®, cvq'?e™, abcdqu; q).,
" B(9) (acq; @), Jaeb e (cav, cbv, cdv; q),,
(q/v; @),
—_— "d 6.12
X (abedgu; g, “" 4P (€12
where A(#) and B(¢) are given by
q( ) (e*, e q),,
AO) = d, cd, —_ 0 6.13
0)= (¢, ac, ad, cd; q)., h(cos 0 a.c.d) cscd,  (6.13)
and
q" 2( L —9)
B(¢) - A (qa abq5 adq9 bdq; q)oo
2 —2ig.

X
h(cos ¢; aq'’?, bg'%, dg'*)’
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respectively. We then substitute for the ,¢;’s in (6.10) from (6.11) and
(6.12) and derive the following g-double integral representation for our
kernel

K(cos 8, cos ¢; a)

(=g —cd)(1—ac)(1—bec) 1
~ 2¢(1—abed)(1 —abedq) hy(a) A(0) B($)

. r,e—fe/b fql/zefw/c (bue”, bue™, abcdu/q; q).,
%% (bau/q, bcu/q, bdu/q; q).,

2b

g (cvg'’%e™, cvg'/?e ™, abcdqu; q),, 1—abcdv
(cav, cbv, cdv; q),, v(1—-1/v)

2 1—abedg*™ V! (abedq™, ad; q),,1 <bcuv>"+1

X ) 4

n=0 1 _adeq_l (% bC; q)n+1

(q/u,1/v; q),,
dudv.
(abedu]q, abedv; @)y " “1°

The n-sum becomes a ¢¢s with one term missing. Hence
K(cos 8, cos ¢; a)

(1—=¢g)(1—ac)(1—bc)(1—cd) 1
2¢(1 —abedq)(1 —abced) hy(a) A(0) B(¢)

Jq”ze’“’/c (cvg'’?e™, cvg'’e ™, abcdv; q).,
g% e (cav, cbv, cdv; q)., (1—0v)
y jqe""’/b (bue’, bue™, abcdu/q; q).,
o (bau/q, beu/q, bdu/q; q).,
s abedq ™', (abedq)'’?, —(abedq)'?, ad, q/u, 1/v
875 \ (abed | 9)V?, —(abed ] q)'?, be, abedu/ q, abedv

. bcuv)_l}
q

xd,vd,u. (6.15)

Now the above ¢¢5 is very well-poised and can be summed by [12, (I1.20)].
Its sum is

(abed, beu/ q, bev, abeduv/ q; q).,

. 1
(bc, abedu/ q, abedv, beuv/ q; )., (6.16)
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This evaluation reduces (6.15) to the form
K o (1—g)(1—ac)(1=bc)(1—cd)
(%, 738) = 3 (@) (1 — abed)(1 — abedyq) A(0) B(§)

J ¢ e (cvq'?e™, cvog'Pe™™, abcdv; ).,
X
g%/ (cav, cbv, cdv; q),, (1—0)

vdu

« qu’”’/b (bue’, bue™, abcdu/q; q)., d
/v (bau/q, beu/q, bdu/q; q), *
(1—q)(1 —ac)(1—cd)(abcdq?; q),,
2chy(a)(beg; q).,
jq'/ze”"”/c (cvg'%e™, cvg'/?e™; q).,
%% (cav, cdv; q),, (1 —0)

a"1b (bue”, bue™, abeduv/ q; 4)o,
X_[ i0 ; dqv dqu'
v (bau/q, bdu/q, beuv/q; q).,

=K1(x9 Vs a)_KZ(xa Vs a)a (617)
say. By (2.10.18) and (2.10.19) in [12] we establish
K,(x, y; a) = (1—ac)(1=bc)(1—cd)  (abdq'?e™, ¢/ c; q).
W5 YA = ke (a) (1 — abed)(1 —abedq) (¢ e /¢, abdq™e ™, q).,

abdql/ze_i"’, q5/4(abd)1/ze_i¢/2, _q5/4(abd)l/26—i¢/2,
X 8¢7 q1/4(abd)1/2 e—idz/z, —q1/4(abd)1/ze_i¢/2,

q1/2ei¢
q ——
C

g, aq'%e™ bq'%e™" dq'*e, abcd
abdq'*e™", bdq, adq, abq, ¢*'*¢ /¢

_ (I—=ac)(1=bc)(1 —cd)(1 —q)(g, aq/c, bg/c, dq/c; 9).
" 2chy(a)(1 —abed)(1 —abedq)(abq, adgq, bdg, abdq/c; q).,

x §W;(abd/c; ab, ad, bd, q'*¢"* [ c, q'*e™%/c | q, q),

(6.18)

where we used the transformation (II1.24) in [12] in the last step. Thus,
(6.18) and some manipulations lead us to the representation
Kl (X, y; a)
_(1—q)(q. g, ac, be, dc, aq/ ¢, bq/c, dq/ c; q),, (abde", abde™; q),,
B 4nic (abed, abd/c; q),, (§'€" /¢, 4" [ ¢; q)s
X sW;(abd/c; ab, ad, bd, q'*¢* /¢, ¢"*e ™/ c | q, ). (6.19)
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Turning to the second term on the right-hand side of (6.17) we have that it
is equal to

fqe”"’/b (bue®, bue ™™, abcduv/q; q).,
a’sp (bau/q, bdu/q, beuv/q; ),

ig(1—q) (¢, €*, e7*"; q), (cdv, acv, ad; q).,
2bsin@  h(cos 0; a, d)(cve”, cve™™; q).,

h(cos B; ¢)  (acv, cdv; q),
(ac, ad; q),, (cve”, cve™; q),,

by [12, (2.10.18)]. Now the v-integral in the kernel K,(x, y; a) is given by
the following expression

= A(6) (6.20)

Jql/ze—w/c (cvql/zezdb cvq e —i¢  qU; q)ood
l/2£x¢/c

(cve®, cve™, v; q).,

_4(1-q9)  (g.q.¢" e q),
2icsing (q'%*/c, q"%e™%/c; q).,

5 ‘ (ge”/c, qe‘“"/C‘ 9.
(q1/2et«9+1¢ q1/2etB i ql/Zeth i0 ql/ZeﬂG i¢. q)oo
_ B(¢) h(cos §; aq'”, bq'"”, dg'"*)(g; 9)., (ge”/c; @)oo
(abq, adq, bdq; q)., |(q"%™ ] c; @), (g€ +7, q'e~%; q) .|

In the above it is assumed that c, 8, and ¢ are real. Substitution in (6.17)
gives

(6.21)

K,(cos 6, cos ¢; a)

_ (1-9)(9: 4 @) h(cos b; ¢, /)
dnch(cos ¢; cq'’?, q'%/c)

W(COS¢' aq1/2 bql/z cq1/2 dql/Z)
1/2ei¢9+1¢ 1/2 ,—i6— 1/2 ,i60— 1/2 ig—

q'%e™7", q'1%e" 7", g1 1%, q),,
(1-9)(g, g; 9)s, h(cos b; ¢, g/c) sin ¢
~ ch(cos ¢; cq', g2/ ¢) h(cos ¢; q%e”, g% )
(e, e )y,
47rh(cos¢ aq'’?, bq'?, cq'? dq'’?)’

><(q

(6.22)

where w is the weight function for the Askey—Wilson polynomials, namely

4
w(cos 6; a,, ay, as, a,) := [ | h(cos 6; a;).
j=1



OPERATORS OF ¢-FRACTIONAL INTEGRATION 299

The expression in (4.4) correspond to the special case a=q'*= —c,
b=¢**=—d of K, and K,. Note that for these special values the  }/,

series in (6.19) is
»

o)

qa/z, q7/4, _q7/4’ q, —q, _qs/z, _q1/4ei¢’ _q1/4e—i¢
8¢7 q3/4’ _q3/4, qz/z, _qa/z’ —q, _q9/4e—i¢’ _q9/4ei¢

B q3/2’ q7/4’ _q7/4’ q, —q1/4ei¢, _q1/4e—i¢
= 605 q3/4, _q3/4’ qs/z’ _q9/4e—i¢, _q9/4ei¢

_ (q5/49 qza _q5/4ei¢9 _q5/4e_i¢; q)oo
(q3/25 _q9/4ei¢9 _q9/4eii¢a q; q)oo ’
by [12, (I1.20)]. A bit of simplification in both (6.19) and (6.22) leads to
the expression given in (4.4).

(6.23)

7. COMPUTATION OF 2,' ON SOME Q-POLYNOMIALS

In this section we evaluate the action of the Askey—Wilson operator &, ,
on un(xa y)a Al(eia’ ei¢) u2n(x5 y) and Al(ql/zeiea ei¢) u2n—1(x9 y)’ nz Oa and
x =cos 6, y=cos ¢. This is then used to establish the parity properties of
A, alluded to in Sections 4 and 5. Our findings are stated in Theorem 7.1.
By using a corollary to Theorem 7.1 we give a proof of (5.9).

From (5.4) we see that

h(cos y; g ~"/%)

(008 Y, 005 ) = (e /D" T (7.1)
We next compute v,(x, y),
0,(x, ) 1= D ty(x, »). (7.2)
By (4.4) we find
v,(x, »)

_0-9@ % Do
4n(_2)n ein¢q1/4
[T (e e g, h(cos y; g%, g M%) dy

0 h(COS l//’ q(n+1)/Zei¢’ q(n+l)/28—i¢, _q1/4’ _q3/4’ ql/ZeiG, ql/Ze—iH)
(=) eT™(g, q: 9)s [ (e, e7; ), h(cos y; g% dy
4nq"*(q"?, ¢*"% q),, Jo h(cos Y; ¢, g7, —q'%, —q**, g %e)

h(cos 0;—q'"*, —q**)

(7.3)
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By (8.5) the integral in the first term on the right-hand side is

27'C { uf4, ind (1+2q(2n+1)/4y+qn+1/2) h(y;_q(l—zn)/4)
(1-¢""")(g; 9)% h(x;—q'*, —g*"*) h(y;—q® D)

q(2n+l)/4e—in¢h(x; q—n/2ei¢)
(=g, =g h(y; ¢ PTe)

(7.4)

Thus the first term in (7.3) contributes

1-¢ U= q" " h(y;—q“
1 qn+1 q +1 (_2)n+1 (1 _qn+1) h(y;_q(5+2n)/4).

For the second term on the right-hand side of (7.3) we first apply [12,
(6.3.9)] to get

(q(5—2n)/4ei¢’ _q(3—2n)/4ei¢; ql/z)zn
(=2)"*'e™q'Y(q’, ' e g),

8W(q—n 2ig. q—(2n+1)/4ei¢’ q—(2n+3)/4ei¢, _q—(2n+1)/4ei¢’

(1+4'")

—(2n—1)/4 i —n. 3
—q @n )/el¢aq ,QaqH)

(q1/4+q 1/4)( q(3 2n)/4 ;¢ 1/2) on (qz’ q)n
(=2)"*"e"™(g% q),

g", g DIAGib = Cne I gis g
X 405 n

—1, _q(5—2n)/4ei¢’ _q(3—2n)/4ei¢

o)

_ (@ g7 (=g, —ge"; ¢'), (1—¢)
( 2)n+1 n(n— 2)/4(1 n+2)

T —qChe™; g),
(_qlina _q(172n)/4e71¢; q)n

—(2n+ 1)/4ei¢

xsWi (=47 ~4% 47", 4, 4 O DIt g g7t

> q
In the above calculation we applied the Watson transformation [12,
(II1.17)] twice. We next apply [12, (II1.17)] then the Watson transforma-
tion and see that the last expression
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_ 1- : 2)(q1/4.|;q 1i4)2)/4( g Ve 0, —g¥e™; g\/?)
(_2)n+ (1 n+ )qnn n

5—2m)/4 it
L= q q( e q),

1-2 4 —
(g™ —qT e ),

1-2; 4 — 1-2n)/4 i 3 /2.
( q ( n)/4,—i¢ _q( n)/ e’¢ _ ,q)w
( 7" (5 )[4 ,—i¢ _q(5—2n)/4ei¢’ _ —1/2’ -

—@n+1)/4 ip q—(2n+ /4 —i¢

%o <q,q,q e’
4%¥3 —n—
-9 q 1’ _q3/2

q54)-

The factors in front of the ,¢, simplify to
(1=g)[(g"*+q7 /2] (1+4°7e?) (144 e™™)
(_2)n+1 (1 _qn+2) qn(n—2)/4 (1 +q1/2)2 q—1/2

_ (+q9)(1—g") h(cos g;—q" ") (7.5)
2(_2)n+1 (1 _qn+2) h(cos ¢;_q(5+2n)/4)' ’

Hence

l-¢g (1=q) g""* h(cos ¢; """
gq lxu"(x’ y) = 1_—qn+1 q /zun+1(x’ y)_ (1 _qn+1)(_2)n+1 h(COS ¢ q(5+2n)/4)

(1+)(1—¢'") g"+P" h(cos ¢; —q“ ")
(_2)n+2 (1 _qn+2) h(COS ¢; _q(5+2n)/4)

(1—g)[1—2g**D*cos ¢+q‘"—1/2]}
- . 7.6
{ (1+g)(1+4¢")(1—g7" (7.6)

From (5.7) and (5.8) we get

2 . .
q—m h(COS 6; ql/zezdb, ql/ze—z¢)
Uym(c0s 8, cos @) = 2%h(cos 0; " e, g+ 12—ty (7.7

—m(m+1) . i —i
q h(cos 0; €', ge™*?)
1’12m+1(COS 0’ cos ¢) = 22m+1ei¢h(cos 9: qm+lei¢ qm+1e—i¢)‘ (78)

Define a sequence {V,,(x, y)} via

I/2m+1(-xs y) = _@;lel (eiﬂ’ ei¢) uZm(xs y)s m 2 0: (79)
VZm(xa y) = _g;lel (q1/2€i6’ ei¢) u2m—1(xa y)5 m> 0 (710)
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First we shall find a closed form for ¥, ;. From (4.16) it follows that

14+4¢'?  h(cos 6; e™, ge™)
8e™ h(cos 0; q'%™, q'%e7?)’

1+4¢"? h(cos 0; q'/%™, q'/% %)

8¢'%e™®  h(cos B; e, ge™'?)

AI (eiH’ ei¢) =

(7.11)
(7.12)

4,(g'%e", ) =

Hence

qmzeiq)
RETES

(1-9)(g; 9)2,
=g e =)

Xjn (eZil//, e—2il//; q)oo h(COS lp’ eid}, qe_i¢) dl#

0 h(COS l//; q"“*’l/Zeid” qm+1/26—i¢)
x h(cos y; e*, ge™) dy

h(cos y;— g%, —g**, ¢, g% ")
_ (9> ¢ Do

47Tq1/4(q1/2, q3/2; q)oo

P (eZiw’ e—2il//; q)ca h(COS l//; ei¢’ qe_i¢) dlﬂ

" Jo h(cos ; "R, qrr g gl — 3T 3T 5Ty

22m+3 ]
- eWyms1 (X, )

(7.13)

The first integral on the right-hand side of (7.13) can be evaluated by
setting

A= ei¢’ a, = q1/2ei0’ a, = _q1/4’ a= qm+1/2ei¢, b= qm+1/2e—i¢ (714)

in (8.2). Then (8.5) and some simplifications show that the first integral
mentioned above simplifies to

2nq~ e[ (4, 4; @)oo h(cos ¢;—q'"*, —¢**)
(1 _q2m+1) h(COS 0;_q1/4’ _q3/4) h(COS ¢;_qm+3/4’ _qm+5/4)

2
m+m+1/2
q

T

22m+1A1(q1/2ei09 ei¢) u2m+1(x5 y)}
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Therefore the first term on the right-hand side of (7.13) contributes

(1—q)e*

24"(1—g"") {(1 +2yra

X l_[ [1+2qk+3/4y+q2k+1/2][1+2qk+5/4y+q2k+5/2]
k=0

, 4qm2+m+1/2 re
2 (g, et (5) (1.15)

In order to evaluate the second integral on the right-hand side of (7.13) it is
convenient to use (8.2) to write

h(cos 0; e*, ge™*)

1/4
q
=5o% (4" @)% [h(cos ¢;—g""*, —g**) h(cos y; — g™/, —g¥'*)
—h(cos ¢; 4", ¢**) h(cos y; ¢, ¢*')], (7.16)

because the integral then reduces to three ordinary Askey—Wilson integrals
(it should be observed that the presence of ¢** instead of ¢'/* means that
we cannot apply (8.5) directly to this case). After some simplifications we
finally obtain the following formula

V2m+1(x’ ¥)
(1-9)q" 0 i
= Tt A,(q"%€", ) up, 1 (x, ¥)

2
(A+g"MA =) g™ ;=g =)
22m+4(1 _q2m+1) h(y;_qm+3/4’ _qm+5/4)
2
(I—g)*g 27" { h(y;—q'"*, —¢**)
(1 _q2m+1)(1 _q2m+2) h(y, qm+5/4’ qm+7/4)

2(1—g*)(1+4q'") h(y; ', ¢°'*)
(1—q) h(y;— g™, —qm /%)

h(y; ', ¢**) }
h(y, _qm+5/4’ _qm+7/4)

+

(7.17)
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By a similar lengthy but straightforward calculation we also find that

(1 _q) qm_1/2 i i
I/Zm(xa J’)=— l_qzm Al(e Hae¢) u2m(x7 J’)
2
(I+¢"DA=q) g h(y;—q'*, —¢**)
22m+3(1 _q2m) h(y;—q’”““, _qm+3/4)

2
+(1 _q)z q—m +m—3/42—2m—4{ h(y;_ql/4, _q3/4)

(1 _qu)(l _q2m+1) h(y, qm+3/4’ qm+5/4)
2(1—g"NY(A+4q'") h(y; ', ¢**)
(1—q) h(y;— g™, —gm+37%)
h(y; "%, ¢**)
h(y;— g, —q'"”/“)}'

+

(7.18)

We summarize our findings in the form of a theorem.

THEOREM 7.1.  With x =cos 0, y = cos ¢, the actions of 2. on u,(x, y),
—A4,(e", ey u,,(x, ), and — A,(e”, e®) u,, _,(x, y), aregivenby(7.6), (7.17),
and (7.18), respectively.

The following corollary follows from (7.17) and (7.18).

COROLLARY 7.1. We have

1— n/2
735, = 0 )+ 1), (1.19)

9;lx‘A'l (qn/ZeiH’ ei¢) un(xa y)
_(-q9q"

l_qn+1

XAl(q(n+1)/2ei07 ei¢) un+1(xs y)+g(y)9 (720)

where f and g depend on n and y but not on x.

Proof of (5.9). This argument will prove (5.9) and 4,,,, =0 for n>0.
For n=2 formula (5.9) follows from (4.15). Assume now that (5.9) holds
for l<n<m and 4,,,, =0 for 2<2n+1<m. Apply (4.1) to (5.9) with
n = m and make use of Corollary 7.2 to obtain

m ) ) (1 _q)n+1—k
y’m+1(-x’ y | q) = - Z Ak(q”+1_k)/2elg’ el¢) N
k=0 (% Dns1-k

X gHI=RE=Rl4y L (x, )+ h(), (7.21)
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where 4 doen not depend on x. In (7.21), interchange x and y, multiply by
(=1)™*! and substract the result from (7.21). In view of (3.11), (5.7)—(5.8),
(3.15), and (7.12) we see that (—1)"*! h(x)—h(y) =0. In reaching this
conclusion we used the facts

Ay =0, for 1<2j+1<m,  A;(¢%" e?)=—A4,(q"", e").

This shows that # must be a constant 4,,,,, say, such that (—1)""'4,,,,
=A4,,,,- Thus 4,,,, must vanish if m is even and the proof is complete. ||

8. APPENDIX
Let
k
S(ab s ak)= n (aja q/aj)oo’ (81)
j=1
Then, by using [ 12, Ex. 2.16], one can prove that
S(Aay, A
Wz Ay g/ 2) = o) s, g /a,)
S(a,/ay, a\a,)

S(Aay, A/ ay)

S(ar [ay, aray) " 4 4/): 8.2)

which, on iteration, yields the identity

r+1 r r+1 h(Z' a. q/a~)
hz; Ay q/A) = S(ha;, A/ a;) e ()]
l_[ 1 ]Zl kl_ll K i= ll_Le] S(ai/aja aiaj)
This enables us to compute the Askey—Wilson type integral
2y 20, r .
J = (e , € q)oo Hl 1 h(COS !// /115 q//’{ ) dlp (84)

o h(cosy;a,b) TT;L} h(cosy;ay, q/a;)

We just use (8.3) in (8.4) and apply the Askey—Wilson formula (6.1.1) in
[12] to obtain

2 r+1 r

=i 5 11 S /)

r+1

x [[ [S(a/a;, aa;)(aa;, ba;, aq/a;, bg/a; q), 17" (8.5)

i=1i#j
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‘We shall now show that (8.2) also helps us rewrite the first term of (4.11) in
a form that leads to (4.13). Set z=cos 8, a, = q"/%™, a, =™, A= —¢"*in
(8.2) to get
h(cos 0;—q'/*, —q**)
( q3/4ez¢ _q—1/4 —i¢ _q1/4e—i¢ _q5/4et¢ Do
x h(cos 6; e"“’, qei )
(_q1/4ei¢ _q1/4e—1¢ _q3/4 i¢ _q3/4e—1¢ q)aa
(ql/Ze 2i¢ q1/2e21¢ q . 1/2, q)OO

x h(cos 0; g%, q'/%e™). (8.6)
However,
(=™ =g @) _ s (0", =g q).
(—q 7™, —q e q), 1 (q'%e™, q'%e; q),,
and
(q'%e7, q'%e™; q),, = (¢'%e7%, q‘/zez“” q*l’e™, q3/2e2“” 7)o

= h(cos ¢; "%, ¢*'*) h(cos ¢;—q'"*, —g*'*).
It follows that
"2, 4" @), h(cos 0;— g, —q*'*) h(cos ¢; q'*, ¢*'*)
= h(cos 0; q'%e™, g% =) — q'/*e"h(cos 0; e ¢, ge'?)
= h(cos 0; ¢"%e", q"?e ™)+ 2(x— y) q'/*h(cos 0; ge™, ge ™).  (8.7)

(¢
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